Rosin Tech Docs
VersionsRosin Tech
  • Rosin Tech 虛擬音樂會軟體使用手冊
  • Virtual Performer
    • Virtual Performer 軟體使用手冊
      • 簡介
        • 目標
        • 軟體說明
        • 系統需求
      • 安裝指南
        • 安裝主要程式:Windows
        • 安裝主要程式:macOS
        • 安裝數位工作站 (Reaper)
        • 音源端設定與配置
      • 功能介紹
        • 演奏者與場境設定
        • 拍攝鏡位設定
        • 即時演奏生成與鏡位切換
      • 操作指南
        • 登入頁面
          • 演奏設定
        • 拍攝設定
        • 即時演奏
      • 進階操作指南
        • 匯入自訂角色
        • 自訂拍攝軌跡
        • 匯入/匯出鏡位
        • 切換演出鏡位
      • 疑難排除 (FAQ)
        • Virtual Performer 操作問題
        • 數位工作站相關問題
        • OrchestraVST 相關問題
        • Animator 相關問題
  • Orchestra VST
    • OrchestraVST 使用手冊
      • 簡介
        • 目標
        • 系統需求
      • 安裝指南
        • 安裝主要程式:Windows
        • 安裝主要程式:macOS
        • 安裝數位工作站 (Reaper)
      • 功能介紹
        • 主頁面
        • Dynamic 聲音動態
        • Effect 效果器
        • MIDI 訊號對應
      • 進階操作指南
        • 開啟 Reaper
        • 匯入 Midi 樂譜
        • 掛載 OrchestraVST 音源
        • 將 MIDI 控制訊號加入 MIDI 樂譜中
        • 利用弦樂音域外音高來調整音色
      • 數位訊號處理 X 數位效果器
        • 時域 vs 頻域
        • 傅立葉級數的頻譜
        • 傅立葉級數的相位譜
        • 歐拉公式
        • Chorus/Flanger/Phaser 原理
  • VRoid Studio
    • VRoid Studio 功能教學
      • 簡介
        • 目標
        • 系統需求
      • 安裝指南
      • 功能介紹
        • 主頁面
        • 基礎教學
        • 表情
        • 服裝
        • 髮型
        • 配件
        • 匯出 VRM 檔案
Powered by GitBook
On this page
  1. Orchestra VST
  2. OrchestraVST 使用手冊
  3. 數位訊號處理 X 數位效果器

傅立葉級數的相位譜

傅立葉級數的相位譜

Previous傅立葉級數的頻譜Next歐拉公式

Last updated 2 years ago

上面的觀點是「從側面看」,接著我們改變視角為「從下面看」。

傅立葉分析究竟可做什麼?無論聽廣播還是看電視,我們一定對一個詞不陌生 —— 頻道。頻道就是頻率的通道,不同的頻道就是將不同的頻率作為一個通道來進行資訊傳遞。下面大家嘗試一件事:

透過 Google 搜尋 (對!把數學式貼入搜尋列即可製圖) 為 sin(x)sin(x)sin(x) 製圖:

接著繪製 sin(3x)+sin(5x)sin(3x)+sin(5x)sin(3x)+sin(5x)。

倘若我把 sin(3x)+sin(5x)sin(3x)+sin(5x)sin(3x)+sin(5x) 的曲線給你,但前提是你不知道這個曲線的方程式,現在需要你把 sin(5x)sin(5x)sin(5x) 這項從圖裡移出,看看剩下的是什麼。這幾乎無法徒手達成。但在頻域呢?則簡單的很,無非就是幾條豎線而已。

所以很多在時域看似不可能做到的數學操作,在頻域相反很容易。這就是需要傅立葉轉換的地方。尤其是從某條曲線中去除一些特定的頻率成分,這在工程上稱為濾波,是信號處理最重要的概念之一,只有在頻域才能輕鬆達成

經由時域到頻域的變換,我們得到一個從側面看的頻譜,但這個頻譜沒有包含時域中全部的資訊。因為頻譜只代表每一個對應的弦波的振幅是多少,而沒有提到相位。基礎的弦波 Asin(wt+θ)Asin (wt+\theta)Asin(wt+θ) 中,振幅、頻率,和相位缺一不可,不同相位決定波的位置,所以對於頻域分析,僅僅有頻譜(振幅譜)不夠,我們還需要一個相位譜。那麼這個相位譜在哪呢?我們看下圖,為了簡化,我們用 7 個波疊加的圖。

考慮到弦波是週期的,我們需要設定一個用來標記弦波位置的東西。在圖中就是那些小紅點。小紅點是距離頻率軸最近的波峰,而這個波峰所處的位置離頻率軸有多遠呢?為了看的更清楚,我們將紅色的點投影到下平面,投影點我們用粉色點來表示。當然,這些粉色的點只標注了波峰距離頻率軸的距離,並不是相位。

這裡需要釐清一個概念:時間差並不是相位差。如果將全部週期看作 $2\pi$ 或者 360 度的話,相位差則是時間差在一個週期中所占的比例。我們將時間差除週期再乘 $2\pi$,就得到相位差。    在完整的立體圖中,我們將投影得到的時間差依次除以所在頻率的周期,就得到了最下面的相位譜。所以,頻譜是從側面看,相位譜是從下面看。

注意到,相位譜中的相位除了 0,就是 π\piπ。因為 cos(t+π)=−cos(t)cos(t+\pi)=-cos(t)cos(t+π)=−cos(t),所以實際上相位為 π\piπ 的波只是上下翻轉了而已。對於週期矩形波的傅立葉級數,這樣相位譜已是很單純了。另外值得注意到,由於 cos(t+2π)=cos(t)cos(t+2\pi)=cos(t)cos(t+2π)=cos(t),所以相位差是週期的, π\piπ 和 3π,5π,7π,3\pi, 5\pi, 7\pi,3π,5π,7π, 都是相同的相位。人為定義相位譜的值域為 (−π,π](-\pi, \pi](−π,π],所以圖中的相位差均為 π\piπ。 最後來一張大集合:

動畫取自

Phase modulation